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Score Equating and Item. Response Theory:

Some Practical Considerations

41 Linda L. Cook

Daniel R. Eignor

Educational Testing Service

Introduction ...

Large scale testing programs are often involved in either of, two situatio1s

that necessitate a consideration of the process of equating. In the first

situationr, a test has been constructed to measure a particular attribute,

aptitude, br ability at some defined leyel of proficiency, and for a variety of N

reasons, most of them related,to test security, multiple forms of the test are

necessary. As well defined s a ge<7 contentand statistical specifications

for a I st inay be, it is usually impossible to construct multiple forms of the

test at exactly the same difficulty level. Since students taking differentest

A
fo s are usually either competing with each other for {certain desired outcomes

or b-/fig judged as masters or non - masters of the test contenevib a vis a

cut -o f point, it is critical that a method of equating or rendering comparable,

the' score the cut-off points, on multiple forms of a test be considered:'

When the forms to be equated test content at the same difficulty level, the

process las been referred to in the literature and in practice as Hcrizontal

4

'equating.

In the, second situation, the testing program is interested in establishing

a singre scale that allows measurements to be compared for various levels of a

. . .-
defined atttibute','aptiiude, or ability; theie may or may not be multiple,

.e.4
forms of the test at.the same level. .For instance; many of the

.

commercially

et,

;
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marketed test batteriekhdve tests developed for various glade levels (fOr,

examp e, third, fifth, and sevAnth grade). Because aggregate scores are often

compared acioss levels (e.g., for 'program evaluation purposes), it is critical

that scores obtained,on the various levels of the test be dquated, i.e. placed'

on a common underlying scale. This sort of equating, referred to as vertical

. equating, is designed to convert to one single scale the scores on multiple

forms of a test each designed to measure a different level of the same attribute.

It should be noted that the intended product of both horizontal and

vertical equating is obtained scores on multiple test forms th are on the same

4
scale. In the case of horizontal equating, the forms to be equated have been

constructed to be.identical in difficulty level but differ for unintended

reasons, while in vertical equating situations, the forms tobe equated have

been intentionally constructed to differ, often substantially, in both content

and difficulty level. As Slinde nd Linn (1977) point out, "It is no surprise

that the'problem of vertical equati g is substantially more difficult and

conceptually hazardous than that of hotrizonial equating."

A commonly' accepted way of viewing equating is that scores on two different

forms of a test may be considered equivalent if their frequency distribution('

for a particular group of examinees are identiCal. This type of equating,

referred to as equipercentile equating (see Angoff, 1971), can be accomplished

by setting equal raw scores on two forms of a test that have the same percentile

(1c

rank for the group of examinees. Such a process,leads to a consideration of

the extent to which the test forms being equated differ in difficulty and the

:effect this has on the shape of the raw score distributions whed the same group

of examinees takes both test forms. If the test forms differ considerably in

difficulty, the fr uency distributions of the raw scores on the two forms will
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differ considerably in shape. If the distributions of raw scores on the two

forms are fOrcedC6,have the same shape (byequipercentile equating), then the

raw score scale on one of the forms must be stretched and condensed to the

extent that all; moments of the distribution are transformed and the resulting

relationship between raw scores on the two forms will be curvilinear. If,

1

however, the test; are very simil4r in level of difficulty, the shapes of the,

two raw scor distributions should differ only in the first two moments when

administered) to the same group of examinees. To effect a change in only the

first two moments,-thereby bringing the raw score distributions into coincidence,

a linear transformation' ay be used. The equating is done by setting equal-the
-

1.

standard deviates for sc res on the_two test forms, resulting in an equation
. ,

which expresses, the ear relationship between the raw scores on theme two
. 1

forms. Of course uivercentile equating used in this situation will also

result in a linear relationshif between raw scOFes-on the two test forms, i.e.,

lcequipercentile methods applied to two_raw sc o e distributions that differ only

in their first and second moments will transform only these moments. Evident

from this discussion is that equiperentile methods should be used for most

.

../

vertical equating situations (i.e., the raw score distributions on the two tbrias

differ in more than the first and second moments), Wherea's linear or equiper-

centile methods may be appropriate for horizontal applications. Jaeger (19811
*a-

has offered some procedures for choosing'between linear and equipercentile

methods in horizontal equating situations.

should be noted that, 'in the Ave discussion, the same group of
.

'examinees were considered to have Oaken both test forms, thereby controlling

-for-the possible differences in ability of the groups involved in the equating

process. In reality, it is usually not the case that the same group takes

5
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both forms,' Usually different groups or samples of examinees of potentially
44,

'differing abilities take test forms of varying degrees of difficulty. -A
.4

4 -

common it block oi anchor test is administered as a,portion of, or along with,

30doeach form as a measure of,the diffefence in ability between the two groups. It
.

is this situationy differences in test difficulties "contaminated" by differ-.

ences in examinee abMitie'i that has profoun'd implications for the use of

traditional equating methods, particularly when forms of quite different diffi-

culties are given to groups or samples that are quite disparate in ability (the

usual vertical equating situation). Slinde and Linn (1977) have cuseed in

comp detail the use of traditional methods in vertical equating situations and

the inherent problems.

The interest in item;response theory (IRT) during the past decade has

focusgd researchers' attention on the advantages, both theoretical and practical,

that IRT' might ofter'to the equatig process. Recently, a number of, research

studies'inv igating the feasibility of using IRT equating have been performed.

Also, a numb r of large scale testing programs are either presently using UT-
.-

equating methodd or contemplating their use in the near future. Therefore it

-: WS deemed useful at this point in-time-Co;sumnarize both what has been learnej,

thus far and what we still need to learn about the use of IRT equating
1
methods.

The purposes of this paper are five -fold; to discuss 1) When IRT equating

methods should provide better results tfian-traditional methods, and when traditional

(

methods should scitlle,42) In those instances when IRT methods should prOvide

better rel1-'4 ults, which IRT model, the three-parameter logistic or the one-parameter

Ogistic (Rasch), is the most reasonable to uae,'3) What unique contributions

can IRT methods offer the equatin g process, 4)-What work has been done, at ETS

and elsewhere, that relates to the confidence that can be placed in the IRT

1

.

6 .
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equating re ults, and 5) What unresolved issues exist in the, application of item

response theory to the problem of equating tests.

In order to accamplish these purposes, a number of background topics will

first be discuss these include the Formal definitions and requirements of

'equating (Angoff, 1971i Lord, 1977, 1980) and t6 implications of these definiti9ns
4

for the equating that is normally done, 2) the basic principlefa IRT equating,

and the theoretical advantages it offers over traditional methods, 3) basic

procedures for linking parameter estimates and deriving estimated true and

6
observed score equatings using IRT, 4) the practical advantages to be gained.

from using IRT equating rather than traditional equating in an operational

testing program, and 5),the distinction made by ,Rentz Ind Bashaw (r977) between

test development and test analysis activities, and why the distinctions

important in discussions of equating.

'Background Information
*

Formal Requirementi for Equating

s %

Angoff (1971) has delineated, in the context of conventional equating

methods, the basic requirements of equating; Lord (1977, 1912 has restated'and.

elaborated upon these requirements in a form that is both illuminating and

amenable.tO a consideration of IRT methods. These requirements will be dis

cussed because they have a good deal of influence on what we realistically

'should expect the equating process to be able to do. According to Angoff

(1971), theie are four-restrictions or requirements to be met by the equating

process: 1) the liptrumenta in question should measure the same attribute, 2)
4

the
i
resulting conversion should be independent of the data used in deriving it

and be applicable in all similar situations, 35 scores on the two fa`t-ms should,
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after equating, be interchangeable, is use, and 4) the equating should be symmetric,

or the same regardless of which form is designated as the base.' Angoff (1971)

goes on to discuss. Chat equating; and the issue of unique conversions, can onay

lie addressed when the test forms are parallel, and cites the definition of

parallelisuigiven by Gullik'sen .(,1950):

"Two tests may be cpnsidered parallel fonds if,
after conversion to the same scale, their'means,

standard deviations, and correlations with any'and
all outside criteria are. equal."

A number of cdmments can be made that should pirove useful for the discus-
-

sion that follows. One, while the first restriction requires that the two

forms meassure. the same attribute, it is not stiptilated that the attribute be

unidimensional. While there are certain ps'ychometrici'ans," most'notably
No

Lumsden (1960, 1976), who question whether measurement is meadiniful for

non - unidimensional content domains, unidimensiOnality is nowhere specified

in Angoff's equatingsrequiremettts. Unidimensionality, or a close approximation

to it, will be aformal require'ment of IRT.equating methods, meading that

somewhat tighter restrictions oa the nature of the test data must be net

for IRT applications. Two, the independence of the conversions from the data

used tor deriving them falls short in practice anytime \the groups taking :the

forms are not randomly equivalent samples from the population for which the

.

conversions are to be relevant. This is, in fact, the usual situation in

equating, where frequently non-random groups, often diffexing in'abilitY, takes

. '

the forms to be-equated. Three, as pointedout by Angoff (1971), the criterion

of interchangeahility of scores only holds when the forms are equally reliable.

Angoff also discusses the process of score calibration, which can be used for

test forms of differing reliability. The calibrated forms can still be refer -

enced to the same scale, but (theoretically) not used interchangeably.

8



Lord (1977, 1980)ilas further'clarified the aboverestriaions, and in

doing,so, has pointed out the theoretical advantages to be gained from using,

IRT instead of traditional equating methods. Lord's (1977) formal definition

of equating reflects in greater detail Angoff's third requirement, called"'
. .

the equity requirement....

'Transformed scores y* and raw scores x can be
called 'equated' if and only if it is a 'matter df.
indifference to each examinee whether he is to take
test X or test Y." 1 r

UnLder this definition, 1) tests measuring different' traits or abilities can't

.

be equated (comparable -to Angoff's first arestriction), 2) raw:or observed

scores on unequally reliable tests can't be forthally equated ( Angoff's third

/

. ,,-'. 6- I

restriction), but also 3) ohaeryed sc,ores on tests of varying difficulty -

cannot be equated. Lord (1977) states:- 1
0

"If tests X and Y are of different difficulties,
i
the relation between their'true stores is necessarily
nonlinear, because of flbor and ceiling effects. If

two tests have a non 71.inear relation, it is implausible
-that.they should be equally reliable for all subgroups
of examinees. This leads to the awkward conclusion that,
strictly speaking, observed scores on -tests of.differen.t.

difficulty cannot be equated." '

.-

, . #

Lord (1980) shows further that while the equity.requireteni can be met
: ..-

forperfectlYreliableorinfallithletestdata(i.e. ,terue. scores) , for
oi.

. V o

observed score data the equity requirement can be met ogly if the two forms
.

. .

are- truly paiallel (i.e., equivalent item by item),.in whi4case, equating

wouldnot be necessary in the first place.
. .

While the above would seem to build the case th$ itheory observed ,

score equating is not possible under any circumstances, in practice, this.is
,0'

not true. Lord (1980) has notdd that in many practical situations, different

forms of the same test have been developlitito^be suffi6iently parallel that
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traditional procedures yield good results. There will be problems in practice,

however, anytime the test forms to be equated are hot of the same difficuLty

ilk I situations) and observed scores are tote used. It

% is for this reason, and also to satisfy Angoff's,restrictiOn two (the conver-,-
. .

.
. .

sidns ihoul0 be independent of the groups used to obtain=them), that IRT methods
. .

.. -_ ,

. 'Rave great appeal for the solution of equating. problems.

`C,/'
0

' Basic Principle ofiRTEquating

The basic underlying property 41.IRT that makes it useful for equating

application§ is as IfolloWs. If the data, being considered for the equating it

the assumptipns of `an IRT model, it is possible'to obtain an estimate'of an

examinee's ability that is independent of the subset of items (test form) that

the examinee responds'to. Hence, it does not matter if an examinee takes an

easy o 'hard-form of a test; :his /her ability' estimate obtained from both forms

-will be identical, within sampling error, once the paraMeter estimates are

placed on .th same scale. Therefore the diffetences in difficulty of ehe forms

being taken is no longer a concevn: Further, if one is'willing to use the

ability "(o) metric for score reporting apurposes, IRT eliminates the need

for equatingtest forms. Al that'remain to be addressed is the placing of

parameter estimates, derived from independent calibrationth on the same scale.

This linking process will be described in2,the-next sectioft:

TOr a'valkety.of reasons, large tale testing programs a're.Oftenunable

reporestores using ate ability metric, and'instead most continve to report

.
scaled scores in a traditional manner even thothh IRT has been used for equatln

...-

.1)r5221P4
(Tests specifically developed using pro

, ;.
.--, '

ures don't usually ,

. >'.

direct transformatiofs of the
. .

-
.44fer-6the'eame problem and often use a variety

1
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ability metric, see Wright, -1977:) At ETS, the reason for continuation of the

use of traditional scaled scores is that the scales existed long before IRT

equating was considered, and the scales have properties that are accepted and .

understood by examinees. Fortunately, because any value of 8 can be

cally related to estimated true scores oh the two forms, a'situation exists

whereby IRT equating of these estimated true scores cn be utilized and traditional

scaled scores reported. Further, Lord (1980) points out that the three requil-e-
-

ments of the .equating process, equity, invariance across groups, and symmetry,

which are not met when observed scores are equated, are met when true (perfectly
'OP

reliable) scores are equated. Fence, test- forms of decidedly different difficulties "

can be equated if true scores are used, and furtper, the groups no longer have

G -
to be random in order to derive an equating relationship-that is invariant

across groups (from the same population). This has prompted Lord (1977).to say

that "...conventional equating methods are not Strictly appropriate whenenon-
CO'

parallel tests having a non-linear relationship are administered to non-equivalent-
.

groups."

While the equating of IRT-derived true Acores would.seem to solve a

Lumber of equating problems that have been discussed, it should be noted that

in Practice we work with true score estimates, not the true scores, which

remain-unknown values. 1,14rd (1980) has pointed out:.
:

'. "However,' an estimated true score does not(
have the properties of true scores; an estimate
true score, after alit, is just ,another kind of
fallible observed score."

4-
?

While the'above is true, What is important to note is that observed scores and

estimated true scores are somewhat different fallible scores, incorporating

different kinds of error: Fa-Cher, by selecting items that it the IRT model

, and calibrating on large enough samples, we can insure that our true score
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'estimate's' are sulfficiently close o'the actual true values so as to derive.the_

important Venefits of the equating; thielis not so easily done With observed.
t

scores. In sum, while the estimated true scope equating will .not be perfect,
- -,. .

....

i't w11 offer much.morein problem equating situations (it.e., test*forms
-

varying greatly in difficulty) then can be derived from conventional observed

score equating.

The IRT Equating Process s 6

IRT equating'can be,viewed simplistically as a two step process. Assuming

ti
that an IRT model has been, chosen, the'first'step, involves choosing an equating

design and then dealing with the problem of getting parameter estimates from

separate calibration runs within this design Ipn the same scale. -(When using
.

certain computer programs. such as LOGIST, it is often the7Ease that all parameter

estimation can he accomplished in a single calibration run.i' The second step

involves performing the.ectual equating; if a program can report scores'on the

.*4
, .

ability metric, the equating has been accomplished. However, because many

testing programs report, scores on some other scale, s hick is a transformation of

the raw score
D scale, the second step becomes necessary.

There are essentially three equating designs used in IRT equating, and

these designs are ana logous to the most .frequently used conventional designs-.

These designs Are referred to es the 1) single group, 2) random groups, and 37

anchor test design. In the single group design: the same group .takes both

test forms to be equated. Because the same group takes both forms, di'fferenCes

in test difficulty are not confounded 1y differences in grou p' abilities, and

. .

because of this, conventional methods work'quite well, provided the forms are

not of grossly differing difficulties. In the randdm groups design, two

.y
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randomly selected groups each take 1.diffferent fOrm

are' truly random groups (from the,same popU ltion

Ajoility levels, end once lgain, difierenh6 in test.,

... ,

cpnfounded by ability differences, and cqnvehtional
,

=

qf.the test. If the groups

they should be at equivalent

form diffiCUlty will not be

methods should work well
.

unless the forma are of grossly.differing difficulties. In the third design,
r .

two different groups of exawinees take two different forms of a test; each form
.

either contaifts common set of items or a common anchdr test is given with he

forms. This is perhaps the most Irequently used design for both horizontal and
-m7

verEicil equating'sitdatiOns. The groups do not Wave to be random, and more

oftenthey are no t; if conventional methods .are used, the common items are used

tolodAst for ability.diffOrgncesin the two'groups. Depending both on the

differences idifficulty of th
,

forms and on the nature of the samples, this

adjustment may or may not be effective, and hence, for this design, IRT equating

can be seen as a,ver attilFctive alternative.
is

As a mea- ns of clarifying theLneed for .a separate step to place parameter

estimates on the same scale,-consider the, following 'situation'which, while no

characteristic of a situation encountered in equating applications, is quite

iftstructive. ,Suppose the same set of items }s given to two,diffeR4it'groups of

examinees, and the parameters for these,items are estimated twice, -once in one

group and then separitely in the other. 'Because the item cheliacteristic curves

are supposedly independent of the groups used to derive them, the expectation

,

would be thatuthe two sets of item parameter estimate would be identical,

except for sampling error; this is not so. When item and ability parmneters are
s ,I

estimated simultaneously in the three-parmngter logistiC.moder, to ensure
.

,
..' ,

A...) .

., e*-

convergence in the.estimation procedure, ability parameter estimates are4131sced
q.?

on a scale with an arbitrarily chosen mean and standard deviation. The mean

/Th

13
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abtlity: is upually set to zero. and the stanaard deviation one, and the item6

parameter estimates (onitidifficulty and discriminatibn),are adjusted accordingly.

If the two groups' differ in ability.level, the item parameter estimates will-
. ;

also differ. There will,however, be alinear relationship between item diffi-

culties
.

(or the es, which are on the`same metric) estimated in the two groups,

and this relationship can be,used to Place'all parameter estimates on the same

scale.

It,should'be clearly understood that when-all items are administered to a
A

sitdgle group of 'examinees and the .parameters are estimated simultaneously, the

item parameters are on a common scale. ,When this is not tha case, Ce., when

Hifferent sets of items are administered to the same group of examinees and

calibrated separately, when the same set-of items are given to different,

groups of examinees,or when different sets of items areadmini.stered to

different groups of examinees, the item parameteg, estimates fbr the three-
.

parameter logistic model are not on 'a common scale and must be adjusted. This
1

adjustment is poss ly for the following three situations: 1) different

sets of items are a. tered to the same group of examinees (common people are

available), 2)(the same set of items are administered to different groupsof
C. ,

.

examinees (common items are available), of 3) some items, that are the same
Y.

(anchor test) and some items that are different are administered to different

groups Of examinees (again -common items are available, but only a subset of the .

total): Situations one and three are characteristic of those encountered in dr

practical IRT equating applications using the single group and anchor test

design. Situation two might be encountered when comparing parameter estimates

30

from pr test.data with parameter estimates from,operationalfform data Appendix.

. .

A of this paper describes in greater detail the procedures.used for placing item
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parameter estimates on the same qcale for the abo9d three situations using the

.
.

threeparameter and also the. oneparametei- logistiC model. Also contained id.
f

_ _ ..-, *--- ' V , 1 i ' .9e. .
o this Appendix ,is an outline hich Zelineates 'eheiplacing of the parameter

a

estimates on the same scale for the three equating designs di;cutsed abgve...

. ,
, f
As mentioned earlier,. if a testing progrit is unable to report 'ability

It.

estimates, to examinees, it is_possible.to.translati gny value .of 8 to corres

ponding estimated true scores on the two'foriis and use these estimated true

I)

.

scores as equated scores. This procedure is described.in detail in Appendix B.

It is also possible to use the estimated true scores to generate a frequency

,
,

. . .

distribution of estimated number right observed scores, on the two test toms.

These scores may then,beequated using traditional equipercentile methods.- It

should be dcied that.whila the e's estimated separately for two test foi4s

stare a linear relationship even ifthe fOrrils iA quite different in difficulty,

the relationship between the estimated true Scores will certainly be non linear

if the forma differ in difficultye. The same will be true of the relationship

evidenced in the equating of the estimated observed score frequency distributions.

Because of the special natureofthe Rasa-4 model, it is possible to use

the ability estimates obtained from a parameter estimation program to directly

equate the actual observed scores. Like the other methods, this. method is

also not without its problems. The procedure is described in-'bore detail in a

1

r--11 section of Appendix B, as are the problems involved with the procedure.

Practical Advantages. 'of Using IRT Equating

Besides the theoretical advantage offered earlier for using IRT equating

methods, i.e., it is the only reasonable method to use whed tests or test forms

of differing difficulty are given to nonrandom groups of differing abilities,

9
15
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there are also_a number of practical advantages to be gained through the use of

IRT. These inClude:,

1. Imprave0'equating, cluding better equating at the end of the scale

where important decisions.re often made. As meptioned before, it is
le '

possible to.equate estimated true scores for all'values of 0, not
% .

just-those Actually obtained from the data.

Greater test-securip .thlough less dependence on items in common with

TO'

a single Old form. If old.forms of tests have calibrated items on

the same'scate, 'the common item block can come from multiple old

forms.

- 3. Easier re-equating should items be revised or deleted. Presently,:

when tradi-Lonal equating methods are used, if there are revisions'or

4.

deletiodsof a substantial nature, the revi4edaform must be readmit).-

istered fogvequatingcurposes. If IRT equating of estimated true

scores is used, the estimated true score for the revisdd-test can be

gotten by simply summing over the P (0 ) for those items left in the
yr

revi form.

4, The possible reduction, of bias or scale -drift which may occur in

equating'§ituations'when traditional methods are used over time,

most notably when the equating samples from the old and new forms are

not 'random -samples (from the same population). This will be discussed'

further.in a Later sestiop of this paper.

5% The possibility of equating, or derivipg the relationship between
4 .

:,'the test forms before' they are administered operationally. This is
p

possitde'only whenke-test data is available. The use of IRT for

ne-equating,offers a unique contribution that can't be derived using

traditional methods:

.-

- 16
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,Test Construction and Test Analysis

In discusgihg the.prob,lem of model-data fit for the Rasch model, Rentz

and Bashaw (1975; 1977) delineated the differences between test- construction

and test analysis activities, a distinction that will grove most useful in

.clartfying when IRT equating methods are more advantageoU! traditional

methods. Intest construction activities, the IRT model, in conjunction with
A

content specifications, is used asa guide for selecting items on the test.

Poorly fitting items to the model can be discarded,-and items of moderately

pOoi fit can be modified. Rentz and Bashaw (1977) state: ,Thtl, for this

, ,

Application, indications of model-datafit are necessary for items, the
/ e

presumption being that the final colLeption of items will include,only those .

, .

that meet whatever criteria for fit might be- estAISTMed." For purposes of a

-.-

discussion 4f equating, in this context, test construction woul mean that the
o

test to be equated and the base test have IRT parameter 'estimates for items

that, fit theingdel well or moderately well before equating is even considered.
._

In the test analysis situation, the final test fOrm is fixed and badly

fitting items can't be. discarded. "Rather, the Objective'in tbis case is to

derive whatever benefits the model-is robust enough to provide, under potentially

less-than-ideal item fit conditions." (Rentz and B
'a
1977), For equating

purposes, _test atialysis activities would refer to fitting an IRT

already existing new and gage test data so that equating can be fabilitated
A'

,
through the use Of IRT methods. It would seem reasonable, however, to consider

fitting an IRT model for equating purposes only if the IRT method offered

something over any of the non -IRT equating procedures. If.,conventional

procedures are deemed adeqqate% and nothing additional can be derived from IRT

procedures, then going to the expense of an IRT equating and dealing with the
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) problems of nonfitting items can be justified only in the weakest sense by

the fact that it can serve- as a check-on the conventional, equating.

-

Discussion Section

When should IRT equating methods provide better results-than traditional methods t_

and when should traditional methods suffice?
6

In answering this question; three distinctions are useful. These are 1)

Whether the equating i$ being done in a test construction or test analysis

rye
, mode, 2) Whether the test o test forms to be, equated differ greatly in

8

J

difficulty (this is the u sual- rizontalvertical equating distinctiod,
1

although it is possible to ve test forms at the same level which differ

grealy i4 difficulty), and 3) What is the nature of the samples taking the
. litro .

tests or test-forms. Are they random amps from the same population; If they
.

.

; are non random, do they' differ, greatly in the ability being measured?

If the test forms to be equated have been specifically designed or con
.

structed using IRT test development procedures, then IRT methods should be used

for'equating. It would,prove impractical to throw away useful parameter infor

mation and equate using traditionalPmethods. While it is true that the traditional

methods will work well if the tests do not'differ greatly in difficulty and the

groups inability, IRT procedures "protect" from the problems encountered when

this is not the case. The IRT equating methods should work alterably well

across all combinations of differences in test difficulty and group ability.

Choice of specific IRT model for equating will be dictated by the choice of thd

model used in the actual test construction process.

If the test forms have been assembled using standard test development
. 1

procedues ( ., tlift test analysis mode), then IRT eiiiatingkshould be considered

. 18



17

. .

_only in those- instances where traditiofial-methods do not work well. These

instances include 1) vertical equating situati ?ns, where tests differing in

difficulty are given to groups of differing abilities, or Z) horizontal equating

situations wD iere test forms of differing difficulty ar
.por

e given to nonrandom

groups that may differ in ability.(the usual anchor test design). Further, if
Ad

the test forms-do not differ greatly in- difficulty brut the groups are nonrandom

groups from the same population, conventional methods, while working tolerably

well, will not insure that the equating results are generalizable to other

groups for whom the forms are appropriate:- IRT. equating methods, used in this

instance, will insure generalizability.

In an attempt ,to clarify those instances in which IRT equating should

provide better results than traditional methods,. entries have been placed in the

-f

following two way table:

Test
Construction

Activity

6 Test

Analysis

Equating

Horizontal Vertical

IRT
. .

IRT

IRT 'or

Conventional',

IRT

As substantiation for the a.bove generalizations, a number of research

studies can be cited. Lord (1975), in comparing,traditional and IRT equating

for the three basic equating designs, found good correspondence between traditional
. . L.

and IRT equatIngs for_tasts not differing widely in diffiCulty when usingthe
4 o''

-.'t

. , I I.

..

1
The choice.of method should be determined through a consideration of the
differences in difficulty of the test forms, the differences in ability

of he groups, and the necessity for generalizable equating results.\
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single groUp at:IA-Tend= groups designs, where differences in ability. level are

not an issu7 rd (1975) did;find, however, substantial differences between
/

conventional and IRT equa;ing.for tests differing in difficulty gillen to non

equivalent ztoups What using an anchorktest approach. Marco, Petersen, and
-

s.

Stewart 1979) also 'found that IRT methods were superior to traditional methods

when tests of
;differing

difficulty were equated using an anchor test approach.

0. ,

A number 14 researchers (Beard and Pettie, 1979; GolubSmith, 1980; -Rentz and4_-

Bashaw, 1975,-,1977) have confirmed the fact that traditional and IRT equatings

correspond well when a horizontal equating of test forms is done, even wNlin the'
/

test forms were not specifically developed to fit a particular IRT* model. These

researchers have been working with the Rasch model, and while ehe,results are

encouraging in terms of suggesting the Rasch model:is robust in equating situations,

from a practical standpbint, the fact that the methods behave similarly suggests

continued use of conventional methods unless some additional benefits 'accrue

/ .

from the IRT equating.

When IRT methods proViHe better results, which IRT model, should be used?

Substantial recent research sheds some light on W hich IRT model to use

when performing vertical equating in test analysis situations. Slinde and

Linn (1978; 1,979), Loyd and Hoover .(1980), and Koren (1981) have demonstrated,

-

tieing either direct equating or indirect techniques, that the Rasch model is

probably inappropriate for the vertical equating of tests not specifically

designed to fit the model. Gustafason (1979a, 1979b) has pointed out one

reason for the failure o the Rasch-model in this situation. When'-guessing

behavior is present iii the item responses for tests being verticalky equated,

a negative correlation results between traditional ittm difficulty and item

2,0
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digAmination indices. Since item difficulties are bound to differ for the
4

forms, the negative correlation forces the discriminations to vary also, thereby

bringing to test the equal item discrimination assumption of the Rasch model.

'While the results of the study by Loyd and Hoover (1980) alsq demonstrate a

problem with the Rasch model for vertical equating situations, these authors are

concerned that because the nature of the content specifications for the test
1

changes appreciably with level, there may be a problem of unidimensionality

across levels that is causing the failure of the Rasch model. The issues raised

by Gustafsson and Loyd and Hoover have implications as to whether the three-

parameter logistic model should be better than the Rasch model for vertical

equating. If, pointed out by Gustafsson (1979b), the item-discriminations .

vary across forms due'to the existence of guessing, the three-parameter logistic

model,,which can handle.variation in item discriminations and also guessing,

should prove useful. If however, the problem is one of dimensionality, as Loyd.

and Hobver (1980) point out, no uniditensionalIRT model can solve the problem..

Further, while certain studies (Kolen, 1981; Marco, Petersen, and Stewart, 1979)

point to a superiority of the three-parameter logistic, model in vertical equating

.situations, there is always the problem of deciding on a criterion upon which to

-
-

Abige which method is superior. The results at present do seem to suggest,

404W ,

however, that the three- parameter rOgistic model offers-a-more viable alternative

for the vertical equating of approximately unidimensibnal tests.

.

In the horizontal equating of test forms' in test analysiS situations, IRT

methods should be considered when the teat forms differ somewhat in difficulty

and the groups are non-random and non - equivalent in nature, which usually

Occurs with anchor test designs. The results of the Marco, Petersen, and

Stewart study (1979) suggest that, for test forms "that differ in difficulty
I 6,

4

4
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developed from the same set of content specifications, the three-parameter

/
.

logistic model is superior for equating purposes. Bolen (1981 has pointedout, /

to

however, (as did Marco et al) that the criterion for judging the superiority of

'equating methods in their study may hale.been biased against certain,of the

methods.

7For. the horizodtal and vertical equating of test forms that have been

specifically constructed to fit an IRT Model, the choice of model for equating

follows'automatidatlY from the choice of model in the test construction process.

. Little has been specifically written, however, about which IRT model should

prove superior in test construction activities for horizontal and vertical

0
-equating situations. The comments that arere gleaned from the research

done on the vertical and horizontal equating of tests in a test analysis mode,

with the hope that these results generalize to test construction activities. It

. would appear that for test form§ developed from the same set of test specifi-

r
c4tions, either'the Rasch or three-parameter logistic model be used in the

''.test construction process. Of course, the added assumptions of the Rasch model,
2i

equal item discriminations and no guessing, must be dealt with, but if the

developer has reasonable flexibility to choose fitting items fnd still meet the

original tOr slightly revised) content specifications, the Raschmodel,is

viable. In fact, it would be to the developer's best interest to use:the asch

model whenever possible because of ,the measurement consequences that result.

When tests or test forms are being developed teapurposely test at different

levels however, the nature of ,the- content specifications mist also change,

somewhat across levels (see Slinde and O.nn, 1977); and because of this fact, it

+will be a mud; more difficult task to prepare items that measure the content

specifications, are at a difficulty level appropriate for the level being

2



21

tested, and at the same time, are equally discriminating across all levels. It

should be noted that if this is not possible, certain researcher(1,umsden,
.

1'9:781 Wood, 9* would say that there is a dimensionality'problem. According

to Lumsden (1978), "Test scaling models are self ontradictory if they'assert

both unidimensionality and different slopes'in th item characteristic curves"

A similar conclusion may result, however, from purely content considerations.

f

Is it reasonable tq expect the, assumption of unidimensionalidyeto underlie a set

of test forms designed to tept
4individisals

at grossly different levels of

ability? In sum, thetisaue in vertical test construction situations may not

ultimately be whether the threeparameter logistic model is more viable than the

Rasch model,,but whether any IRT model is appropriate. This of course is an

iequallyjeasonablequestion to pose for vertical equating n test analysis .0

situations.,

What unique contributions can IRT methods offer the equating process?

7 !There are at least three situations in which IRT methods can make a

unique contribution to the process of.test equating; that is, an equating can

be accomplished that would have been either impossibre or of minimal utility.

when using conventional methods.

The first of these-situations involves the pre- equating of test forms.

Preequating refers to the process of establishing equating conversions between

a Rew form add a base form or forms prior to he time themes; form is admin,

'

istered. The process depends on thp adequat pretesting of a pool of items

from which the new test form will be built, the calibrationlof these items

using IRT methods, and the utilization of a linking scheme to place the IRT

parameters from the pretested items all on the same scale and also on the same
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) scale as the old`form(s). The process of pre-equating is-presently under

,investigetion'at ETS because at least three very important outcomes accrue

ea

from the prpcesa. 'One, IRT-based pre-eqUating is iinaficted by the possible'
, .

' future problem of revealing common'item equating sections under discfoiure
. .. .. -. - ,..,

- -
/-

Llegislation because there would be no need for these sections' 'in'the first

place: Two since evatingusing IRT pre-equatin thods i.s ssible prior
10

ti

to the actual administration of the test, new test formA can be introduced at

low volume administrations; a particular problem if conventional methods had '

to,be -used. Three, pre-equating removes the equating process from the score

reporting cycle (the period from the time the test is administered to the time

scores are reported), thereby minimizing the chance of equating errors and at

the same `time freeing up time for other psychOmetric activities..

A sacodt unique contribution of IRT to the test equating process involves
A

4
equating tests that do not contain common-items and 4 at present, can't be pre-

equated. .As an example, consider the following. Each October, two forms

of the Preli4nary Scholistic Aptitude Test/National Merit Scholarship Qualifying

Test (PSAT/NMSQT) are administered, and for security reasons, the two forme

contain no common items. As a result, the two forms are not'equatediejeach

other, but are both equated to the same two old SAT test forms. Comparability

of scores across the two forms is thus established indirectly through a mutual

1

relationship with the SAT forms. It, would obviously be more desirable to effect

a direct form-to-form equating rather than depend on the indirect equating J

presently use6 If the data collected at the two ad 'niatrations can be arranged

as in Figure 1,-it,islFilable, using LOGIST, to estima e all item and 'ability

parameters in, a single computer run. 'Hence, item parameters for botfi PSAT/NMSQT

forms will be on the same scale, thus providing a direct equating of the ability

2$4'
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Figure 1: Calibration Plan or Direct IRT Equatili of PSAT/NMSQTForm 1 Verbal Section to PSAT/NMSQT Form 2

Verbal Section. The Wire matrix represents a'single calibration run. Crosses indicate items

that examinee groups were actually exposed to Each PSAT/NMSQT and SAT same co ains approxdmatefy
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estimates, An equAing of estimated true scdres or estimated observedescor e
.

freqUenby distributions automatically follows-. The tesultslof doing the above

have been reported by-Cook, Dunbar, and Eignor (1081).

The final unique contribution of IRT to the equating process involves the

equating of a test comprised of items from a locally.deve14ed item bank' to a

standardized 'norm- referenced test that has national norms data. Any test made

'up of items form.the item bank may thebe used in conjunction with the norm

data, provided the items,frOm the bank have been calibrated and placed od the

same underlying scale. The items 6omprising the test can then be matched to the

measurement need (for instance, pretest or posttest) and the norms data catObe

psed for evalu'ition of pupil g owth Holmes (1980) has'investigated the above

procedure for use in Titre I evaluations, using the tneiarameter logistic or

Rasch model.. Thocedure, basqd upon what was documented in the Holmes

report, is as follows:

1. A local item bank testing rqlevant content taught in a district or.

system is developed. An IRT model is fit, to the. items (the content

domain must be reasonably unidimensional), based on pre-test data,

, .. .
. .

.

sameand all the parameter estimates are placed on the- scale.
'

!
- , .

,2. A nbrm-referenced test which tests comparable contentAld has repre
. . --,.

.

.

' sentative national norms is:selected.
.- o A 41"

3. .A test built from the local item ban and the norm-referenced test
. 4

0.
..,

. ;

are' administered to the group of exa inees. .

r
. ..

.

4, All items from both tests are calibrat d together. For a particular .

,

.
,

item bank te't score, the equivalent ability estimate can be determined.
r .

In turn, this estimate and the item Parameters_for t4e norm-reierehced

. test allow the deterMinatice the equivalent liormed test score.
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This is done for the range of item bank test scores, which in total

comprises an IRT (estimated true.score) equating of scores on both

tests.

5. Each equated normed tlit score has a percentile ienk associated with

it that can be converted into a Normal Curve Equivalent (NCE)score.

required for Title Levaluation purposes. These percentile ranks Can

be determined through interpolation of the raw score to percentile

. norms table provided with the normed test.

6. The equated item bank test scores are translated into item bank

ability estimates using the item parameter estimates already in

existence for all the items from the pre-test data.

o if
7. The end result is a one-to-one correspondence between total item

.

bank ability estimates and NCE units, to be used f-r evaluation

Purposes.

*

(

8. Any possible subset of items,from the bank selected for a particular

purposeresults in measurement on the common 'ability metric which can
c--

be related to the NCE units. Tests that measure relevant local

. content and are peaked to provide maximum informatidn for the examinee

group cab.then"be developed and administered with the resulting

measurement of growth, on the mandated NCE scale.
0

The unique aspect of this process is not'the"eqUating of a locally developed
ft

.

test to a nationally normed test (this could be done 'using conventional methods),

but the equating of the local bank ability scale to the norm-referenced test.

Without having dose this, each locally developed test Would eve to be equated,;

rather than the equating being done only once.

It should benoted that a major concern e

28

ed by H es is the project
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report was fit of the data to the Rasch model. While we also share a similar

concern, expressed further in a later section of the paper, nothing precludes

the use the three-'parameter model inHolmee. study. The equating done was not

the actual raw to raw equating througbestiMited abilities that can be done only

with the Rasch model,,but instead, estimated true score equating, which can be

done 'with any of the models.

What has been done that relates to the confidence that can be placed in.IRT
qtr.

equating results?

The problem involved in evaluating the results of any IRT equating concerns.

the criterion measure. Since gobodY ever knows what the trile equating may be,
> ;

i.e., the best criterion against which' to judge the results of the actual

equating, other criterion measures have often iieen devised; these vary in degree

of complexity and in assumptions made. In situations where[ conventional equating

methods are known to function well or have been in existence.for some time, the

results of the conventional method(s) forms a' terion against which the IRT

o

equating may be'evaluated (see Cord, 1975; Beard and Pettie, 1579; Rentz and

Bashaw, 1977; Golub-Smith, 1980;.Marco, 1977; Woods and Wiley, 1977, 1978). In

, other situationo, the test itself may form a criterion; that is, the test is

equated to itself (see Lord, 1975, 1577; Marco, Petersen, and Stewirt, 1979)..-

To the extent that the equating results.coincide:withexpectation, one'llds

confidence iri the method. In othet situations, one can use stability of equating

44

nather than accuracy of equating as a criterion measure for evaluat.ve purposes.

Kolen (1981) cross validated his equating results with random samples of individuals.

. .

More specifiCally, he formed frequency distributions for his random cross-validation

samples and then compared his equated score frequency distributions with these;

a mean squared difference between scores with identical percentile ranks was

29
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used for evaluative purposes., Loyd end Hoover.(ifW 1980) formed a somewhat different
--, .

-.

.
-i

. .,.
,

criterion again4t.which to evilute the results of their studly,*which involved

the use of the Rasch model in vertical equating of forms given to examinee

.

groups of differing abilities: They equated the same forms using.groups of

comparable abilities. A comparison of the two equatings then allowS one to

.g

ascertain whether the results, obtained were grgater than those expected iiom
tt ;

. -simple sampling differences in parameter estimates obtained for groups of

codaparable abilities.

Another way to gairi confidence in .IRT or cdwientional equating results is

through a 'consideration ofthe scale drift that'occuri'when multiple forms of
, .

a test are equated over time. Scale drift will have occured if the results

of equating Form A to F6rmD:is not the same as that obtained by equating.Form
*

A to Form D through intervening Forms B and C. One would have:confidence in

the.equating'method that resulted-in the least scale drift. A problem with
o

the above example is that there is no good way of knowing which equating

method va$ beat for directly equating Form A to Form D. An excellent, way of

dealing with this problem is-through the use of a circular closed chain, as

depicted in Figure 2. Form V4, which has previously been put on scale, can
I,
be equated to itself through the five intervening forms. Any discrepancy

, between the transformation obtained; from the circular chain of equatings
qh

and the initial-V4 scale could.be attributed to'scale drift. One would then

confidence in the equating method that resulted in the least discrepancy

between the initial 'scale of'V4 and the scale resulting from the chain of

equatingst A study comparing scale drift for IRT and tonventional equating

methods applied to aptitude test data has been done by Petersen, Cook: and,

it...S.tocking (1981). A similar, study using achievement test data-is presently-
..

30
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Figure 2: Verbal Aptitude test Equating Chain Taken from Petersen, cook,
Stocking Study (1981).
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Denotes operhtional verbal test form.

2Denotes common item equating section.
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being conducted at ETS.'

In sum, a number of ways have been devised for evalhatirig IRT and

conventional equating results. -These methods can be viewed as practical

solutions to the problem that one never knows what the true or best equating

criterion is in a particular situation.

What are the unresolved issues that relate to IRT equating?

There are two varieties of unresolved issues involving IRT equating. One

set of issues has to do with the mechanics of IRT equating, and these may be

called direct equating issues. The other set of issues has to do with 'the use

of IRT in the hest construction .process, and how this then relates to IRT

equating. These are more. indirect issues, such as dimensionality, but they do

influence what can be reasonably expected from an IRT equating. These indirect

issues will be touched upon briefly, and then the more direct equating issues

discussed in some detail.

Most of the IRT test construction work has been done using the Rasch model.

Advocates of using the Rasch model in test construction situations stress that

Alak,

the most important criterion in deciding Upon items for a test is goodness of

fit of the items to the model (Rentz.and Rentz, 1978). Recently,'two levels oft,

concern have been voiced reflecting this focus on goodness of fit. Wood (1978)

and Whitely (1977) are concerned that this,focus will necessarily restrict

measurement to domains that, while unidimensional, do not necessarily measure

what we really want to measure. Gustafsson (1979a), on the other hand, is

concerned that the usually applied Rasch goodness of fit tests' are not sensit*ve

to multidimensionality among the items, and advocates the application of a

number of other tests sensitilieto violations of unidimensionality. Finally,

32
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Wood (19787'has fitted random data to the Rasch model and was not stopped by the

. 1

usual goodness of fit tests. -While not-wanting to enter further into a debate

. k
about the use of gdodness of fit test's to construct unidimensional tests, we

shall note from.the above that the use of IRT equating in test construction

activities may npE ba as straightforward as suggested. If the constructed tests

are not unidimensional, then the issue becomes exactly the same as that addressed

in the test analysis mode -- namely, how robust is IRT to violations of assumptions

in equating situations. Hence, unless the process of test construction leads to

a unidimensional domain of meaningful content, IRT equating procedures must be

considered in a.different light, no longer as a natural outcome of the test

development process.

'Mere are a number of more direct unresolved issues that will be addressed

next. 'Many of these issues have 'come to the front in the IRT equating work

that is ongoing at ETS. When using the three -parameter.logistic model for

equating, two specific issues have come up. One has to do with the type of

score_to be equated when ability estimates cannot be used for reporting purposes.

*a!This is partiqularly a problem for testing programs that have a tog history of

use of a particular scale and forms placed on that scale through conven 1

observed formula score equating. When ,IRT equating is done, should the relati n-

ship between estimated number right true scores, estimated true formula scores,

or estimated number right observed score frequency distributions on thp new and

base forms.he used to place the'new form on scale? 'Ideally, the relation-

ship between estimated observed formula score frequency distributions should be

used:ynit this relationship is unobtainable using IRT methods. The second issue

has to do with which calibration design best for linking parameter estimates

--for w4ch sort-of data.
\
As explained in Appendix A, there are essentially

33
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three methods of getting_parametex estimates on the same scale using LOGIST

a
with anchor test designi% Method one, called concurrent calibration, involves

running all the data in oneeLOGIST run, treating data fora particular group

on the form not taken as not reached.. (Figure 1 represents a concurrent

calibration run.) Method two involves fixing the difficulties for the common

items inIthe second calibration run at the values estimated in the first

calibration riAl. Method three involves estimating fhe parameters separately

(
in two calibration runs and then using the reieEionship between the difficulty

parameters for the common items to place all parameter estimates on the same '

scale. Expergientation at-ETS with these methods seems to suggest that no one

method is uniformally best, but that the choice of method seems to vary with the

data set.
e.

Another issue presently of interest his to-do with the oneparameter

logistic model, where essentially two separate /RT equating procedures can be

'One procedure, used..by Rentz and Bashaw (1975Y and Loyd' andMoover

(1980), is based on the direct relationship between Rasch model observed scores
0

and ability estimates. Observed scores on test forms corresponding to the

same ability estimate are considered equated. The other procedure, used by

Bolen (1981), corresponds to that usually used foi the threeparameter ldgisti.c

i model, where there is no direct relationship between observed score and ability.

For any particular ability, knowledge orthe it parameter estimates for each

form allows generation of estimated true scares, which can be considered equated

(see Appendix B). From these estimated true scores, frequency distributidns of

estimated observed scores may be generated and equated using conventional

equipercentileethods: While the first procedure mentioned above is straight

forward, there is a problem if for A particular ability level, corresponding
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integer raw scores do:not exist on the two forms. With the other procedure, the

problem of missing data does not exist because the estimated true score ;elatidia
.

ship can be determined f or any ability level, not just 'those ability estimates

derived fraiii the data. Of interest is which'procedure would be best to use in

which situation.

There are a number of other issues of a more general nature that. will be
0

hriefly mentioned. One has.to do with.the demonstration of unidimensionality

for tests being vertically equated., For a variety of reasons, the assumption a

of unidimensionality can be violated for tests that are intentionally built to

vary in difficulty, and procedures need to be considered that address this

concern. Another issue has to do with determining which types of test data

IRT equating procedures will work best with and what types are problemattt.

While this can be viewed as a-dimensionality issue, a robustness issue, or

both, there is more to it. at is conceivable that IRT equating will be of

differential utility for a variety of tests, all of which-do not greatly

violate the assumption of unidimensionality. It would be useful to know for

which kinds of tests IRT equating works best and for which it gives the poorest:.

results. Finally, an issue presently of interest at ETS is how to determine or

establish a base scale when using IRT procedures. As mentioned earlier, for a-°

variety of tests, ETS is locked into using a previou,y established scale. The

issue of a new scale would present itself if either a new.program were being -

introduced or a decision were made to change content specifications an existing

tests to the extent thaC equating was no longer possible and perpetuation of the

existing scale unreasonable. Should scores then be reported on the ability

metric, some jinearktransformation of that scale, the estimated true score

scale, or the estimated observed score scale? Of interest is the generation of
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arguments in favor of each scale so that an.informed decision can be made,.

Conclubions

The purpose of this paper was to address, using available research, some

practical issues relating vo IRT equating procedures. The outcome of the paper

is most likely that we have brought 110 more issues yet to be resolved than we
4

have claiifled existing' issues. This is undoUbtedly due to what is presently

known about IRT equating procedures. Hopefully as more IRT equating research is

done the questions posed in this paper will come to be resolved.

A

el
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Appendix A.

Scaling Parameters -- Three- Parameter Logistic Model

N v 4

SitaatioA 1. Two different sets of iteds (Form X:and Form Y) are given

to the same grolip of,examinees . 1 4:

Situation 2.

a. Calculate: Mi.., $D. , M ,

vx 1-e* vx v Y Y

. where X and Y designate Forts X and Y and M and SD
represent the'meansandstandardIdeviations of e's .

(ability parameters) estimated by the two test forms.

b. Ikthe assumptions of the moAeI are met, the eos will
have the following linear relationship:

0y = Ae
X
+ B

SD

where A =
SD

X'

and B = M, -AM
ey

8x

The item parameters. are adjusted as follows;

g g
.

a = a A -
g g

b - B

A -r

The same set of items is given to two different 'groups of
examinees (Group Asnci. Group B)

,

Calculate: Mb , SP,', Mb , SDb

DA .ue, B

where M and SD represent' meats and standard deviations,
the subscripts A aid B represent groups atd4 represents
the item.difficulty parameter.

',\
)

/ *

b. If the.assumptians of'Ithe'modf1 are' met,, the b's,w41

have the following linear relationship

et

4

11.

,

1



0

,

bB = Ab
A

+,B

where, A =

and,

B

bB

SD
bA

.c. The itemdiscfiminitioi (a ) and psuedo guessing

parameters (c ) as w41 as ability estimates (8a)

are adjusted as follows:

c
g

cg

a*
g g

(6 - B)
6 4
a A

(5)

(6)

Situation 3. SoMe items that are the same and some items that are
difteraft,are administered to different groups of examinees '

(Group A and Group B)

a. Expressions-5-8 can be used inthis situation. Linear
parameters (A and B) determined. from the, common items
given'to the two groups of examinees- are used to adjust
all, item parameter and ability estimates obtained for
one'of the foris to the scale of the second form.

ot ..

b. The following is an'alternative method that may be
)usedin thisysituation.1

i. Estimate parameters for Form Y and the common items
using data obtained when the form was given to
Group B

4i. Estimate parameters for Form X and the common items
using data obtallied when the form was given. to
-Group A holding the b valuer:: for the common items

fixed at estimated values obtained from Group B
.

.
-, -. .

. \

iii. This procedure ensures that Form X item parameters
and ability estimates will be nn the Form Y scale.

Scaling' Parameters

:Situation 1. Two different groups
to the same group of

One-Paratheter Logistic Model

of items (Form X and Form Y) are given
examinees

1Not^all computer pfograms haye the capabilities,of accepting parameter
estimates from.a previous run. LOGIST, the computer program used at
ETS, does have, this capability. '



a. Calculate: M
'

eX eY

b. Calculate the linking constant, k = M - M
eX

,

c. Adjust all ability paiameters jotimated by-Fori X,as
follows:

0* = 0 + k (9)

sax aX

d. Adjust all Form X difficulty parameters as follows:
/

b
*

= b
gX

+ k (10)

gX

-

SitUation 2. Two different groups of items (Form X and,-,Form Y),Siong with

a. common set of items are given two different groups of
examinees (Group A and Group B)

MbA ' MbB
a.' Calculate:

where Mb and Mb refer to the mean easiness of the
A B

common items given to the respective groups

b. Calculate the linking constant, k = Mb

a. B A t

c. Adjust the form X Item easieeSs parameters as follows:

b = b + k
gX gX

1, (11)

d. Adjust all abirity parameters estimated by Form X as

follows:

1

0 = 0 +_k (12).

af

Situation 3. The same set of items is given to two different groups of--
examinees (Group A and.Group B)

,

In this case, if one calculates Mb and.% based on all
B

the items, they will be equal within sampling error.
.Hence, there is, no linking con taut --- all parameter
estimates are on the same scal6 withOut adjustment.

, lk

a.

.

k.
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Equating Designs

A. Single Group Design

1. Two test forms are given to the same group of examinees

Conventional methods work very -well in this situation

b. Simplest approach would be to estimate all item and
ability parameters in a single computer run

i. All item parameters and ability estimates will

be on the,same scale

ii. Estimated A's obtained from the two forms will be

identical except.for sampling error. If one is

willing to report ability estimates to examinees,
no further effort is necessary.

fi

c. Item parameter and ability estimates could be-obtained,

in two separate computer runs

This would necessitate placing item and ability
parameter estimates on the same scale. Procedures

given for Situation 1 could be used for this purpose.

B. Random Groups Design

-1. Two randomly selected groups each take a different form of
Pthe. same test
K it

a. Conventional methods work fairly well in this situation 4'

b. Assumption is that two groups are equivalent in ability

c. Could analyke the data in two separate computer runs and

use the procedure described in Situation 1 to place

item and ability par6metes on the same scaler

d. The following procedure could also be used -
. .

i. Analyze the data in two separate computer runs

ii. Obtain a distribution of 8's for each data set,
e.g. Form X given to Group A, Form Y gillen to

Group B

iii. Equate the 8's obtained from the two runs by
ordinary equipercentile methods

43



C. Anchor Test Design

41

1. Two groups of examinees..take two different forms ,of a test;
but each form contains-a common set of items

a.- Simplest:way to-accomplish the equating is to estimate
all item andability parametersjitogetherin a single
computet run

The two-forms.of the test to be equated are cpnsiJered
to be one long test consisting of items comprising
Foim X and Form Y

c. All of the examinees in both groups (Group A and Group B)
are assumed to have taken all of the items in both
test forms; where there are no respondes, the items
.ae aidqmedto be not reached.'

d. The item. parameter estimates for both farms will be, on
the .pame'scale and ability estimates obtained from either
form will be equivalent

e. Sap Rose item and ability parameters h been obtained
aepitrately for the test forms adminis to their

respective,groups

Pr,OCedures given for Situation 3 could be used
to place all item and ability parameters on the
same scale

ii. An alternate p otedure.would be to estimate the item
and ability pa atheters.for Form Y given to Group B

4 F011owing thi the item and ability parameters,for

Form X given o GroUp A Would be estimated fixing
the item difficulty parameters, for the common set
of -items contained in Form X at the values previously

obtained from the Form Y estimation-procedure.1

3-The computer program L6GIST used at ETS for parameter estimation
has the capability for dealing with these options; other programs
do not. Hence;'paraineter estimates d rived from these programs
must be put on state using the metho de ribed previously in

Situation 3.
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Appendix B

Alternatives to Equating kbility Estimates

A. Equating Estimated True Scores

When reporting e's is not a viable alternative for a
testing program, it is possible to use the relationship between
e and true score to obtain equated estimated number'right true
scores

1. If Form X and Form Y are both measures of the same ability,
e, then their estimated number right true scores can be
calculated as follows:

Tx = -E P (0)

i=1

nY

T = E P (0)

jai

where,

T
X

= Form X estimated true score for a'g en 8

T
Y

= Form Y estimated true score for given 8
.

and P (0, P
j
(0 are the.item response functions for

.items i, i=1...n.:(in Form X) and j, j=1...ny (in

Form Y) respectively, using parameter estimates

(2)

2. Using expressions 1 and 2,it is possible to.find an
estimaped.number right true score on Form X that is equivalent
to an'estimated number right true score on Foim Y for any

given e.

It is also possible,to.use the parameter estimates to obtain
equated estimated true formula,scores

1. Estimated true formula scores are calculated in a manner
similar.to that used to obtain estimated true scores:

nX
E P (e) [ E Q (01/A-1

i=1

ny ny

= E P (0) [,E .Qi(e))/A-1 (4)

j=1 j=1
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where,
A =' the Number of choices per .item

= Form X estimated true formula score for a given 8

= Form Y estimated 'tkue formula score fora given 8

. "
.

Pi (8),(8), P (8) are as defined previOusly'

Q (e), Q (e) are equal to 1-P (e),
i j i

...

14 (8), respectively
.

and

2. As was the'case for estimated number right true scores, it
is possible to find an estimated true formula score on
Forml that is equivalent to an estimated true formula score
on Form Y for any given 8. It should be noted that in both

instances, the equations implicitly assume; however, that
every individual responds to all items; i.e., there are
no omissions or not reached items.

B. Equating Estigated Number Right Observed Score Frequency Distributions

A third possibility is to generate estimated number right
observed score distributions for Form X and Form Y and to equate

these observed-score distributions using ordlnaiy equipercentile

equating methods -

1. The frequency distribution of number-right observed scores
for a given 8, f(x18) is a.generalized binomial distribution

(tendall and Stuart, 1969, Section 5,10). This distribution

can be generated by the generating function.

n

II + Qi) (5)

i=1

2. Using the parameter estimates in P
i
'and Q

i'
the estimated

total group or mArginalJdistribution of number right observed

scores will be.

1
n

N
f(x) = I f(xl8a)

where, a indexes examinees 110

C. Which type of Score is Mosf Appropriate

(6)

1. Estimated true scores have the following disadvantages:

a.- The possible range for true scores is only from

T = I. c ( the pseudo chance level) to t = n.
1
Many

i=1

1This is, of course, a problem when the three-parameter logistic

model is used. 46.
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testing programs report scores below ,this level and
therefore require an equating process that will provide
conversions for the lower level scores

b. A procedure exists for p oviding these conversions

i. Determine the mean an standard deviation of
scores below chance lev o Form X

A
cX nx

11X- A.;.1 E ci A-1
i=1

.

S
X

= (---- [ E c
i

- EAA-1
)

2 2 nX' nX c
i

i=l

1
i=1

,, -t
where,

Mx = the mean of -Form X scores below chance

2
level,

S
X

= the variance of Form X scores helow
chance level,

A = the number of choices per item, and
c
i

= the psuedo guessing parameter for item i

(7)

(8)

ii. Equations 7 and 8 are repeated to determine
. My ( the mean of Form Y scores below chance level)

and S
2 t(

the variance of Form Y scores below

chance level),

iii. .Linear parameters for equating Form X scores
below chance level to Form Y scores below/Fhance
level are determined ad follows:

/TY

'A=

S
X

B = My - A Mx

(9),

(10)

iv. This procedure may-also be used to determine the
linear parameters for equating number right true
scores below chanpe level. In this case,

cX
nx

cX
2 2

MX =; E c
i
and SX = E ci - E c

1=1 i=1 . i=1
i

. The equipercentile equating of estimatid number right observed
scores also has a disadvantage in that conversions obtained
from this type of equating may not be hpplicable, in the
strictest sense, to observed formula scores. .(Note that it

4.7
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efis

is not possible to generate an estimated observed formula
score frequency distribution.)

D. Using Rasch 8 Estimates to Equate Actual Observed Scores

.- Because of the speci nature of_ the Rasch model .(total .score is a,

sufficient statistic for e tim9ing ability, a monotonic relationship' exists

between raw score and est ted ability), it is possible to use the results
of IRT parameter estimation to directly equate actual number right observed

scores. This is the procedure used by-Rentz and Bashaw (1975) in performing

the raw score to raw score equatings when applying the Rasch model to the

Anchor Test Study data. !It was also used by Loyd and Hoover (1980). The

steps listed below are synthesized from Rentz and Bashaw's (1975) procedure:

1. It,should first be noted that a conversion or scoring table is standard

output from a Rasch parameter estimation program. This table lists

for every obtained rats score on the test the corresponding ability

k estimate 8-

2. For the two tests to be equated (X and Y), there will be two conversion

tables, one relating x to 8x and the other y to .ey6 Suppose

further that one of the parameter scaling methods has been used to

obtain Ox*, /.which is now on the same Scale as 8y. (Y is the base

test.)

3. For each pos ible score yj , find the score xi such that 8 - 8
*

is

a dinimumC.

*
4. The score xi, that minimizes - 9 is the equivalent score of

yj xi
y

There is a problem with the above procedure which results in what Rentz

and Bashaw (1975) refer to as "assignment error". Assignment error occurs

when it is necessary to assign an examinee a raw score on the equated test

that isamast equivalent to a raw score on the bast test. Alppose, for instance,

that on the base test a.raw score of 10 corresponded to a 8 of 2.0, and on the

equated test a raw score of 9 corresponded-to a 6 of 1.9 and a raw score of 10

to a i of ,2.2. In this case, a raw score of 9 on the equated test would be

taken to be equivalent to a raw score of 10 on the base test because the 9 of

1,9 is c osest to Z.O. The assignment error would be the difference in these B

Obvious y, because:of the discrete nature of raw scores, Longer tests, having

more ri scores and result in fewer assignment errors. However, ,

the smile sort of problem mould occur if there were missing data'(raw scores)..

This speaks to the need for an adequate sample of examinees whose abilities

will cover the range of possible raw scores on the two test forms if this sort

of equating is to be considered.

yj
xi

I
4
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